### Tutorial: Factor analysis revisited – An overview with the help of SPSS, SAS and R packages

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

Holzinger, K. J., & Harman, H. H. (1941). Factor analysis; a synthesis of factorial methods.

Cartel, R. B. (1965). Factor analysis: An introduction to essential I. The purpose of underlying models. Biometrics, 21(1), 190-235.

Pearson, Karl. "Principal components analysis." The London, Edinburgh and Dublin Philosophical Magazine and Journal 6.2 (1901): 566.

Kane, H., & Brand, C. (1905). The importance of Spearman’s g. The occidental quarterly, 3(1), 7-30.

Joliffe, I. T., & Morgan, B. J. T. (1992). Principal component analysis and exploratory factor analysis. Statistical methods in medical research, 1(1), 69-95.

Thompson, B. (2004). Exploratory and confirmatory factor analysis: Understanding concepts and applications. American Psychological Association.

Fabrigar, L. R., & Wegener, D. T. (2011). Exploratory factor analysis. Oxford University Press.

https://www.ibm.com/support/knowledgecenter/en/SSLVMB_23.0.0/spss/base/idh_fact_rot.html

Lawley, D. N., & Maxwell, A. E. (1971). Factor analysis as a statistical method (Vol. 18). London: Butterworths.

Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and psychological measurement, 20(1), 141-151.

Cattell, R. B. (1966). The scree test for the number of factors. Multivariate behavioral research, 1(2), 245-276.

Velicer, W. F. (1976). Determining the number of components from the matrix of partial correlations. Psychometrika, 41(3), 321-327.

Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30(2), 179-185.

McDonald, R. P. (1970). The theoretical foundations of principal factor analysis, canonical factor analysis, and alpha factor analysis. British Journal of Mathematical and Statistical Psychology, 23(1), 1-21.

Jöreskog, K. G. (1967). A general approach to confirmatory maximum likelihood factor analysis. ETS Research Report Series, 1967(2), 183-202.

Jöreskog, K. G., & Sörbom, D. (1986). LISREL VI: Analysis of linear structural relationships by maximum likelihood, instrumental variables, and least squares methods. Scientific Software.

Jöreskog, K. G., & Goldberger, A. S. (1972). Factor analysis by generalized least squares. Psychometrika, 37(3), 243-260.

Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23(3), 187-200.

Neuhaus, J. O., & Wrigley, C. (1954). The quartimax method. British Journal of Statistical Psychology, 7(2), 81-91.

Kaiser, H. F. (1974). A note on the equamax criterion. Multivariate behavioral research, 9(4), 501-503.

Jennrich, R. I. (1979). Admissible values of γ in direct oblimin rotation. Psychometrika, 44(2), 173-177.

Jennrich, R. I., & Sampson, P. F. (1966). Rotation for simple loadings. Psychometrika, 31(3), 313-323.

Hendrickson, A. E., & White, P. O. (1964). Promax: A quick method for rotation to oblique simple structure. British journal of statistical psychology, 17(1), 65-70.

Costello, A. B. (2009). Getting the most from your analysis. Pan, 12(2), 131-146.

Mundfrom, D. J., Shaw, D. G., & Ke, T. L. (2005). Minimum sample size recommendations for conducting factor analyses. International Journal of Testing, 5(2), 159-168.

SPSS Inc. Released 2008. SPSS Statistics for Windows, Version 17.0. Chicago: SPSS Inc.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Team, R. C. (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2013.

DOI: http://dx.doi.org/10.3000/ijsmi.v3i1.6

This work is licensed under a Creative Commons Attribution 4.0 International License.